
International Journal of Scientific & Engineering Research, Volume 6, Issue ƚ,)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Testability Assessment of Object Oriented
Software Using Internal & External Factor Model

and Analytic Hierarchy Process

Harsha Singhani, Dr. Pushpa R. Suri

Abstract —In this paper we have proposed a new testability assessment model for object oriented software based on existing software testability

models. The model is based on those six important internal programming features of object oriented design and six external quality factors which are

not used before together at the same time in-spite of being highlighted in some or other research. These design features are assessed using popular

static object oriented metrics and their link with testability is established indirectly through the affected quality factors. The model is further analysed

using Multi Criteria Decision Making (MCDM) approach. The model is validated using Analytic Hierarchy Process (AHP). The proposed model and

evaluation technique helps software engineering practitioners to choose the best alternative amongst available options by analysing the Testability not

only at internal level but also at external quality level too.

Keywords- Software Testability Assessment Model, Object Oriented Testability, Static Metric, AHP.

——————————  ——————————

1. INTRODUCTION

Testability is one of the qualitative factors of software

engineering which has been accepted in McCall and Boehm
software quality model. These models had built the
foundation of ISO 9126 software quality model. Formally,
Software testability has been defined and described in
literature from different point of views IEEE [1] defines it
as “The degree to which a system or component facilitates
the establishment of test criteria and performance of tests to
determine whether those criteria have been met” and ISO
[2] has defined software testability as functionality or
“attributes of software that bear on the effort needed to
validate the software product”.

The testability research actually is done from the prospect
of reducing testing effort and testing cost which is more
than 40% of total development cost of any software [3]. Still,
the research in the field of testability has not been done in
much detail. As discussed in our previous work about
testability and testability metrics[4], [5], it has been found
that testability research has taken a speed up in past few
years only and much of the work has been done using
various object oriented featured metrics. In this paper we
have proposed a testability model for assessment at during
design time and evaluated the same using AHP technique.

This paper is organized as follows: Section2 gives brief
overview of software testability and AHP related work.
Section3 showcases the proposed testability assessment
model from design perspective based on significant object
oriented programming features and external quality factors.
Section4 provides overview of methodology applied for
evaluation and implementation of the proposed model.
Section5 presents the details of testability evaluation based
on proposed model using AHP. It is followed by conclusion
drawn in section 6.

2. RELATED WORK

2.1Software Testability

Software Testability actually acts as a software support
characteristic for making it easier to test. As stated by
Binder [6] and Freedman [7] “a Testable Software is one
that can be tested easily, systematically and externally at
the user interface level without any ad-hoc measure”. Voas
[8] describes it as complimentary support to software
testing by easing down the method of finding faults within
the system by focusing more on areas that most likely to
deliver these faults. Hence, over the years Testability has
been diagnosed as one of the core quality indicators, which
leads to improvisation of test process. The insight provided
by testability at designing, coding and testing phase is very
useful as this additional information helps in product
quality and reliability improvisation [9], [10]. All this has
led to a notion amongst practitioners that testability should
be planned early in the design phase though not necessarily
so. As stated by experts like Binder [6] that testability
involves factors like controllability and observability

————————————————

 Harsha Singhani is currently pursuing Ph.D. (Computer Science) from
Kurukshetra University, Kurukshetra, Haryana, India. PH-95400899999.
E-mail: harshasinghani@gmail.com

 Dr. Pushpa R. Suri is a retired Professor from the Department of Computer
Science and Applications Kurukshetra University, Kurukshetra, Haryana,
India. E-mail: pushpa.suri@yahoo.com

268

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

.Where controllability is the ability to control software
input and state and observability is the possibility to
observe the output and state changes that occur in software.
So, overall testable software has to be controllable and
observable [6]. But during our research we have found
more such quality factors like complexity, traceability,
understandability, and test–support capability have equally
contributed to testability of a system[11].

Now any quality factor measurement refers to the activities
and methods that study, analyze, and measure it during a
software product development life cycle. Similar is the case
with software testability measurement also. Unlike
software testing, the major objective of software testability
measurement is to find out where these faults are hiding
from testing and highlighting specific components which
are poor in quality. Now these measurements can be
applied at various stages during software development life
cycle of a software system.

In the past, there were a number of research efforts
addressing software testability measurement. The focus of
past studies was on how to measure software testability at
various phases like Design Phase[6], [10], [12], [13], [14],
[15], [16], [17] and Coding Phase [18], [19], [20], [21], [22].
Lot of stress has been given upon usage of object oriented
metrics for object oriented software testability evaluation
during these researches. It came out during the study that
the metrics used related to object oriented software
testability assessment mostly belong to static software
metrics category. These metrics were mostly adapted from
CK [23], MOOD [24], Brian [25], Henderson-Sellers [26]
metric suite along with others [27]. Lot of empirical study
has been done in showing the correlation of these metrics
with unit testing effort [27], [28], [29], [30]. Few studies have
been focused on UML diagram features from software
testability improvisation prospect during review of these
design diagrams [31], [32], [33], [34]. All this work has been
explained in depth in our previous work [4], [5]. But very
less work has been found using MCDM techniques, which
is explained next.

2.2 Analytical Hierarchical Process

In context with software engineering problems, very few
studies related to multi-criteria decision making (MCDM)
approach has been done and published. Saaty [36]
proposed AHP as one of the most practical method based
on MCDM. AHP is mostly used when the criteria or factors
and decision makers are small in number. There are other
popular methods such as Fuzzy-AHP and preference
ranking organization method of enrichment evaluations
(PROMETHEE-2), all capable of solving logistics as well as
technical systems. Now, when it comes to testability very
less of it is validated ever using any MCDM techniques.

AHP technique as proposed by Saaty [36], is based on pair-
wise matrix to determine indistinctiveness in MCDM
problems. It helps in decision making on the basis of needs
and understanding of the problem. P. Khanna [37] have
proposed primitive work in this field using AHP for
testability which is not supported by any empirical study
on the data. Dubey et. al. [38] have done study on object
oriented usability with AHP. Though some work have been
found for aspect oriented software testability and
reusability assessment using MCDM technique done by
Singh and Sangawan [39], [40] which has been technically
found useful in how AHP needs to be applied in other
software too, for study of other quality features. Yang [41]
have also used this technique for analyzing and calculating
hardware testability using comprehensive weighted
method and AHP.

3. TESTABILITY EVALUATION MODEL

Our testability model is based on Dromey’s software
quality model [42] which has been a benchmark in use for
various quality features as well as many testability models
so far. We have followed the steps as mentioned below to
formalize the model:

 Identification of internal design features for object
oriented software testability assessment

 Identification of static metrics out of many popular
metrics for each.

 Identification of external factors affecting software
testability

 Establishing link between theses external quality
factors and internal features which are evaluated
through selected object oriented metrics.

 Establishing link between testability and these
identified external factors which indirectly link it
to identified internal features.

 The Model is followed Evaluation using AHP
technique.

On the basis of our previous research work and surveys we
have identified six object oriented core features to assess
testability for object oriented software at design level [4],
[5]. All these are internal quality characteristics –
Encapsulation, Inheritance, Coupling, Cohesion,
Polymorphism and Size & Complexity as defined below in
Table 1.

The studies indicate encapsulation promotes efficiency and
complexity. Inheritance has a significant influence on the
efficiency, complexity, reusability and testability or
maintainability. While low coupling is considered good for
understandability, complexity, reusability and testability or
maintainability, whereas higher measures of coupling are
viewed to adversely influence these quality attributes.
Cohesion is viewed to have a significant effect on a design’s
understandability and reusability. Size & Complexity has a
significant impact on understandability, and testability or

269

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

maintainability. Polymorphism reduces complexity and
improves reusability. Out of six identified features four
features have been proposed in MTMOOD testability
model [15], which does not cover the polymorphism and
size & complexity feature, which have also been found as
essential internal features by many researchers in testability
study [15], [22], [36], [37]. These six object oriented features
play a very significant role in testability improvisation
directly or indirectly as illustrated below in table 2. This
relation has been build based on thorough study of
publications [2], [20], [35], [38], [39]etc.

So, the proposed testability assessment model with respect
to internal design features using static metrics is based on
six above mentioned object oriented features from
testability perspective as pointed in Binders research too
[6]. Though these features can be measured by many
metrics options available as discussed earlier [5]. Most of
these metrics are accepted by practitioners on ‘heavy
usages and popularity’ and by academic experts on
empirical (post development) validation. But to keep study
simple from AHP evaluation aspect we have chosen the
few basic but popular metrics amongst testability
researchers. Out of all the popular metrics suites discussed
in our previous work [48] six of these static metrics as

explained below in Table2 have been identified for the
evaluation of each of these feature and their effects on any
object oriented software testability at design time.

As described in Table2 below for Encapsulation evaluation
number of methods metrics (NOM) is being chosen by
many researchers for the effect of information hiding on
testability[15], [44]. So we kept it for encapsulation
evaluation for our model too. Inheritance is evaluated using
Number of Children metrics (NOC), one of the most
popular and efficient inheritance metrics [22], [36], [41],
[42]. For Coupling we chose coupling between objects
(CBO) and for Cohesion we opted cohesion metrics (Li &
Henry version) (LCOM). These two were the most sought
after and unparalleled metrics available for assessing
coupling and cohesion effect on testability as per literature
study and popularity amongst industry practitioners [10],
[20], [22], [24], [37], [43].Though Size & Complexity can be
easily measured by other metrics in this category but we
chose weighted method complexity (WMC) metrics due to
its significant role and association in number of test case
indication pointed [6], [28], [49]. Polymorphism is one of
the underlying factors affecting testability but as quite
stressed by early researchers like Binder and others [6], [25]
as it results in testability reduction ,we chose
polymorphism factor metrics (POF/PF) for testability
assessment.

Keeping in mind our previous research work and surveys,
we have identified six external quality factors to assess
testability for object oriented software [4], [5]. These factors
are –Controllability, Observability, Complexity,
Understandability, Traceability and Built-in-Test. Most of

TABLE 1:

OBJECT ORIENTED DESIGN FEATURE AFFECTING TESTABILITY

TABLE 2:

 TESTABILITY MODEL METRICS DETAILS

Testability
Factor

Metrics Name Description

Encapsulation No of Method
(NOM)

This metric is the count
of all the methods

Inheritance No of Children
(NOC)

This metric is the count
of children of super-class
in the design.

Coupling Coupling
Between Object

(CBO)

This metric count of the
different number of
other classes that a class
is directly coupled to.
(Two classes are coupled
when methods declared
in one class use methods
or instance variables
defined by the other
class)

Cohesion Cohesion Metric
(LCOM)

This metric computes the
relatedness among
methods of a class based
upon the parameter list
of the methods.

Size &
Complexity

Weighted
Method

Complexity
(WMC)

It s the count of sum of
all methods complexities
in a class

Polymorphism No of methods
overridden

(NMO)

It is count of overridden
method in a subclass

TABLE 2:

TESTABILITY MODEL METRICS DETAILS

270

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

TABLE 3:

EXTERNAL SOFTWARE QUALITY FACTORS AFFECTING TESTABILITY

External Factors

Affecting

Testability

Definition Significant Testability

Related Work

Controllability During software testing,

some conditions like disk

full, network link failure

etc. are difficult to test.

Controllable software

makes it possible to

initialize the software to

desired states, prior to the

execution of various tests.

High Complexity of the

system is actually an

indicator of decreased

system testability [43],

[44], [53], [54].

Observability In the process of testing,

there is a need to observe

the internal details of

software execution, to

ascertain correctness of

processing and to

diagnose errors

discovered during this

process. Observable

software makes it feasible

for the tester to observe

the internal behaviour of

the software, to the

required degree of details.

Observable software

makes it feasible for the

tester to observe the

internal behaviour of the

software, to the required

degree of details, Hence

observability increases

testability in the system

[7], [55], [56].

Complexity It is basically is the

difficulty to maintain,

change and understand

software.

BIT actually provides

extra test capability

within the code for

separation of test and

application functionality

which makes software

more testable by better

controllability and

improved observability

[6], [18], [57], [58].

Understandability It is the degree to which

the component under test

is documented or self-

explaining.

Controllability is an

important index of

testability as it makes

testing easier [7], [55],

[56], [59].

Traceability It is the degree to which

the component under test

is traceable.

A non-traceable

software system cannot

be effectively tested,

since relations between

required, intended and

current behaviours of

the system cannot easily

be identified[6], [49].

Built In Test Built in testing involves

adding extra functionality

within system

components that allow

extra control or

observation of the state of

these components.

An understandable

system is easily testable

and [13], [60]–[62].

these factors were pointed in Binder’s [6] research work on
testability. Many other researchers established these factors
relation too with testability as mentioned below in table 3.
These factors get directly or indirectly affected by all of the
above mentioned internal features and further complicate
or reduce the task of testing hence reducing or increasing
overall testability of the software.

We had identified the link between all the internal object
oriented programming features which directly affect
testability and all external quality factors which are also
indicators of testable software too. The table given below
actually elaborates the contribution of each of these internal
programming features towards the six major quality factors
which are directly linked to testability.

TABLE 4:

RELATION BETWEEN OBJECT ORIENTED PROGRAMMING

FEATURES AND EXTERNAL SOFTWARE QUALITY FACTORS

External Factors

Affecting

Internal OO

Features

Linked

Significant Effect On

Testability

Controllability Encapsulation Encapsulation promotes

controllability

Coupling Coupling makes

controllability difficult

Cohesion Cohesion helps improving

controllability

Polymorphism Polymorphism further

reduces controllability

Observability Encapsulation Encapsulation reduces

observability

Inheritance Inheritance help improving

observability

Polymorphism Polymorphism & data hiding

reduces observability

Complexity Inheritance Low Inheritance indicates

more complex software

Coupling Highly coupled classes

makes system more

complex

Cohesion Cohesion amongst methods

and classes help reducing

complexity

Size Big size software and classes

are more complex

Polymorphism Polymorphic data and

methods helps reduce

complexity

Understandability Inheritance Inheritance reduces

understandability

Coupling Coupling makes system hard

to understand

Cohesion Cohesion improves

understandability

Size Large Size software are not

easily understandable.

Traceability Encapsulation Encapsulation makes

traceability difficult

Coupling Coupling makes traceability

of test requirement hard

Size Increase in size reduces

traceability

Built In Test Encapsulation More Encapsulation requires

more built in test

Coupling Coupling increases built in

test count

Cohesion Cohesion reduces the need of

built in test

271

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Hence we may say that Testability requires Low Coupling,
Adequate Complexity, Good Understandability, High
Traceability, Good Observability, Adequate Control and
more Built in test. In spite of having lot of measurement
techniques for testability evaluation using some or the
factor using few of the above mentioned metrics, but
testability has not yet been found to be evaluated from
these factor perspectives. The study still does not show an
elaborative impact of all of them together for testability
improvisation or test effort reduction which is what
motivated us for proposing this new model.
So, the proposed testability assessment model with respect
to internal design features using static metrics is based on
six above mentioned object oriented features from
testability perspective as pointed in Binders research too
[6]. The proposed model is as follows:

4. METHODOLOGY

4.1 AHP Methodology

It initially requires the goal objective to be divided in to
hierarchy of factors and sub-factors, which can be easily
analysed individually. Once the hierarchy is build the
decision maker’s job is to evaluate the problem as follows:

Step1: Reciprocal Matrix Formation: First, a pair-wise
comparison matrix has been constructed based on the
factors. Every factor needs to compare with the immediate
next factor. A common scale by Saaty as shown in Table3
below is used for the same.

The matrix thus formed somewhat look likes this, Suppose
for n number of factors, F1, F2….Fn are considered, which
are to be compared. Relative weight of Fi relating to Fj
denoted as mij and a square matrix A = [mij] of order n will
be formed as given in equation (1) below.

 (1)

Here, mij =1/mji and i does not equal to j and mii =1 for all
i. Hence the calculated matrix is known as reciprocal
matrix.

TABLE 5:

SATTY RATING SCALE [36]

Intensity of
Importance

Definition Description

1 Equal
Importance

Elements Ci and Cj are
equally important

3 Weak
Importance of
Ci over Cj

Experience and Judgment
slightly favor Ci over Cj

5 Essential or
Strong
Importance

Experience and Judgment
strongly favor Ci over Cj

7 Demonstrated
Importance

Ci is very strongly favored
over Cj

9 Absolute
Importance

The evidence favoring Ci
over Cj is of the highest
possible order of
affirmation

2,4,6,8 Intermediate When compromise is
needed, values between
two adjacent judgments
are used

Reciprocals
of the above
judgments

If Ci has one of
the above
judgments
assigned to it
when
compared with
Cj, then Cj has
the reciprocal
value when
compared with
Ci

A reasonable
Assumption

Step2: Eigen Vector Calculation: Next, we have to evaluate
the relative weights of the factors, which are relevant to the

problem is called an eigen vector .

A . =max  , max= n (2)

Where,  is eigen vector and max is eigen value. For a
consistent matrix, λmax >=n.

Step3: Consistency Index Calculation: Now, we have to
evaluate Consistency Index (CI) for that matrix using

Fig 1. Testability Assessment Model

272

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

  –

 (3)

Step4: Consistency Ratio: Finally, we have to evaluate
consistency ratio (CR) using saaty average consistency
index (RI) values as shown in Table4.

 (4)

TABLE 6:

SAATY SCALE OF AVERAGE CONSISTENCY INDEX (RI) [36]

Saaty also proposed that if the CR > 0.1, the judgements
may not be consistent and unreliable. In such a case, a new
comparison matrix is needed to set up until CR < 0.1. This
way we can apply the AHP for predicting a decision based
on available choices at hand.

4.2 Testability Study

Testability is an important attribute to the maintainability
of software. Testable software is easy and less costly to
maintain and testability represents an important software
quality characteristics.

In order to conduct testability study based on above model
and AHP technique. The hierarchical model has been made
with six external factors- Controllability (F1), Observability
(F2), Complexity (F3), Understandability (F4), Traceability
(F5), Built-In-Test (F6) and six internal programming
features as sub-factors where sub-factors contribute to
testability directly as well as indirectly by affecting these
quality factors.

As discussed above these six features are– Encapsulation
(SF1), Inheritance (SF2), Coupling (SF3), Cohesion (SF4),
Size & Complexity (SF5) and Polymorphism (SF6) has been
shown below in fig2. In order to assign weights to these six
major quality factors that affect testability a thorough study
of object oriented software testability factors has been done
along with discussion with concerned experts from
industry and academia. The conclusive values are thus fed
in 6x6 matrixes of these major factors as given below in
Table 7. On the basis of this matrix, eigen value, eigen
vector, consistency ratio and consistency index calculations,
we have been able to evaluate weights for all these factors
as shown below in detail.

5. EVALUATION OF TESTABILITY MODEL USING AHP

5.1 Proposed Model Evaluation

The pair wise comparative value of all the six major factors
affecting testability is given below in Table 7. There are
many methods for calculating the eigenvector. We have
used spreadsheet based approximate calculations for local
priorities of criteria or factors. The Eigen value thus
calculated are as shown below in table 7. The eigenvector of
the relative importance of F1, F2, F3, F4, F5 and F6 is (0.08,
0.37, 0.04, 0.25, 0.14, 0.13). These values are weights of main
factors i.e. Controllability (0.08), Observability (0.37),
Complexity (0.04), Understandability (0.25), Traceability
(0.14) and Built-In-Test (0.13) in testability assessment.

Now the six eigen values calculated for each of these factors

is (6.19, 6.63, 6.19, 6.68, 6.56, 6.26) with max=6.42 which is
>= 6 (total no of factors), which is consistent. Using this we
calculate the CI and CR values as follows:

  –

 =

 = 0.08 (5)

 CR=CI/RI=0.08/1.24=0.07 (6)

TABLE 7:

 EIGEN VECTOR AND EIGEN VALUE FOR MAIN QUALITY FACTORS

 F1 F2 F3 F4 F5 F6

Eigen

Vector

F1 1.00 0.25 3.00 0.33 0.50 0.33 0.08

F2 4.00 1.00 5.00 3.00 3.00 3.00 0.37

F3 0.33 0.20 1.00 0.17 0.33 0.25 0.04

F4 3.00 0.33 6.00 1.00 2.00 4.00 0.25

F5 2.00 0.33 3.00 0.50 1.00 2.00 0.14

F6 3.00 0.33 4.00 0.25 0.50 1.00 0.13

(max =6.42, CI=0.08, CR=0.07)

Fig 2. Object Oriented Software Testability Assessment Hierarchy
for AHP Analysis

273

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

As the calculated value of consistency ratio is found to be
CR<0.1 indicates that the estimate is consistent and

acceptable.

Now all these factors are further dependent on one or more
core object oriented features which act as sub-factors in the
proposed model. These sub-factors as discussed above in
table 4 affect the quality attributes which contribute to
testability. The demonstrative pair-wise comparison matrix
of respective sub-factors for each of these factors
individually is given below from Table 8-Table 13.Table 8
reflects Controllability (F1) factor matrix analysis from four
sub-factors perspective, similarly Table 9 reflects
Observability (F2) and three respective sub-factors
comparative effect on it. Table 10 and 11 gives pair-wise
comparative values of four sub-factor affecting Complexity
(F3) and Understandability (F4) respectively. In Table 12
and 13 we have given comparative values of three sub-
factors each for Traceability (F5) and Built-in-Test (F6). The

eigen value, max , CI and CR values for each individual
factor matrix is calculated as per above mentioned method.

TABLE 8:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF

CONTROLLABILITY

 SF1 SF3 SF4 SF6
Eigen
Vector

SF1 1.00 3.00 0.50 2.00 1.20

SF3 0.33 1.00 0.33 0.33 0.40

SF4 2.00 3.00 1.00 2.00 1.69

SF6 0.50 3.00 0.50 1.00 0.85

(max =4.12, CI=0.04, CR=0.05)

TABLE 9:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF OBSERVABILITY

 SF1 SF2 SF6 Eigen Vector

SF1 1 0.33 2 0.268013

SF2 3 1 2 0.537374

SF6 0.5 0.5 1 0.194613

(max =3.008, CI=0.005, CR=0.008)

TABLE10:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF COMPLEXITY

 SF2 SF3 SF4 SF6
Eigen
Vector

SF2 1 0.25 3 2 0.23

SF3 4 1 4 3 0.43

SF4 0.33 0.25 1 0.5 0.07

SF6 0.5 0.33 2 1 0.16

(max =5.18, CI=0.04, CR=0.04)

TABLE 11:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF

UNDERSTANDABILITY

 SF2 SF3 SF4 SF5
Eigen
Vector

SF2 1.00 3.00 0.50 0.50 0.21

SF3 0.33 1.00 0.33 0.33 0.10

SF4 2.00 3.00 1.00 2.00 0.41

SF5 2.00 3.00 0.50 1.00 0.29

(max =4.12, CI=0.04, CR=0.05)

TABLE 12:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF TRACEABILITY

 SF1 SF3 SF5
Eigen
Vector

SF1 1 4 3 0.62

SF3 0.25 1 2 0.22

SF5 0.33 0.5 1 0.16

(max =3.04, CI=0.02, CR=0.03)

TABLE 13:
EIGEN VECTOR & VALUES FOR SUB-FACTORS OF BUILT-IN–TEST

 SF1 SF3 SF4
Eigen
Vector

SF1 1 0.5 0.2 0.12

SF3 2 1 0.33 0.23

SF4 5 3 1 0.65

(max =3.004, CI=0.002, CR=0.003)

The Eigen vector values for all of these six selected quality
factors and their respective sub-factors matrix are found to
be within acceptable limits. All six CR values are <0.1,
hence result is consistent and applicable.

5.2 Testability Evaluate of Sample OO Projects:

We have applied the above testability assessment on three
object oriented programs the data for which is taken from
[52] which consists of three standard object oriented
projects. Table 14 below shows the gathered metric value
for each of the above internal object oriented programming
features which affect the selected quality factors. Here the
prime motivation is to show the applicability of the
proposed scheme, irrespective of the size of the considered
project. The AHP technique is applied on pair-wise
comparison matrix of these object oriented projects for each
testability factor individually.

TABLE 14:
THREE PROJECT METRICS VALUES

 NOM DIT CBO LCOM WMC NMO

P1 6 0.5 1 0.5 6 1.5

P2 10 0.5 2.2 0.5 10 8

P3 8.8 1.5 2.2 1 8.8 1.5

The eigen vector values for all three projects with respect to
six testability assessment sub-factors - Encapsulation
(Table15), Inheritance (Table16), Coupling (Table17),
Cohesion (Table18), Size& Complexity (Table 19) and
Polymorphism (Table20) are shown below. The solution
with respective eigen vector values and respective CR (0.07,
0.07, 0.07, 0.06, 0.07, 0.08) values are also below in these
tables. All CR values are below 0.1. Hence, the judgements
are consistent and acceptable. These eigen vector values are
utilised in evaluating global utility of each project and its
overall rank.

TABLE 15:
PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

ENCAPSULATION (SF1)

 P1 P 2 P 3
Eigen
Vector

P1 1.00 5.00 3.00 0.62

P2 0.20 1.00 0.25 0.10

P3 0.33 4.00 1.00 0.28

(max =3.09,CI=0.04,CR=0.07)

274

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

TABLE 16:

PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

INHERITANCE (SF2)

 P1 P2 P3
Eigen
Vector

P1 1.00 0.33 4.00 0.28

P2 3.00 1.00 5.00 0.62

P3 0.25 0.20 1.00 0.10

 (max =3.09, CI=0.04, CR=0.07)

TABLE 17:

PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

COUPLING (SF3)

 P1 P2 P3
Eigen
Vector

P1 1.00 4.00 7.00 0.69

P2 0.25 1.00 4.00 0.23

P3 0.14 0.25 1.00 0.08

(max =3.08, CI=0.04, CR=0.07)

TABLE 18:

PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

COHESION (SF4)

 P1 P2 P3
Eigen
Vector

P1 1.00 3.00 0.33 0.27

P2 0.33 1.00 0.25 0.12

P3 3.00 4.00 1.00 0.61

(max =3.07, CI=0.04, CR=0.06)

TABLE 19:
PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

SIZE (SF5)

 P 1 P 2 P 3
Eigen
Vector

P1 1.00 5.00 3.00 0.62

P2 0.20 1.00 0.25 0.10

P3 0.33 4.00 1.00 0.28

(max =3.09, CI=0.04, CR=0.07)

TABLE 20:

PAIR-WISE COMPARISON MATRIX OF THREE OO PROJECTS FOR

POLYMORPHISM (SF6)

 P 1 P 2 P 3
Eigen
Vector

P1 1.00 6.00 3.00 0.63

P2 0.17 1.00 0.20 0.08

P3 0.33 5.00 1.00 0.29

(max =3.10,CI=0.05,CR=0.08)

The overall global utility of each project is calculated using
the summation of the products of the weight of OO Project
with reference to each factor by the weights of
corresponding factor yields the global utility of each OO
Project.

OOS Testability =

 (7)

For example: U (P1) =

=(0.619*0.023+0.688*0.008+0.272*0.032+0.627*0.017) +
(0.619*0.098+0.284+0.197+0.627*0.071) +
(0.284*0.010+0.688*0.018+0.272*0.003+0.619*0.005+0.627*0.0
07) + (0.284*0.051+0.688*0.024+0.272.0.100+0.619*0.071) +
(0.619*0.087+0.688*0.032+0.619*0.022) +
(0.619*0.037+0.688*0.068+0.272*0.021) (8)

= 0.039 +0.162+0.023+0.098+ 0.088+0.075 = 0.485 (9)

The Analytical Hierarchy Process has shown in this study
that project 1 is most testable project amongst all three
projects followed by project 3. The three object oriented
project testability study presented here.

TABLE 21:

EIGEN VECTOR AND WEIGHTS FOR OVERALL GLOBAL UTILITY

CONCLUSION

In this paper we have proposed an object oriented software
Testability assessment model. The model has been based on

F
a

ct
o

rs

W
e

ig
h

ts
 F

o
r

F
a

ct
o

rs

S
u

b
-F

a
ct

o
rs

G
lo

b
a

l
W

e
ig

h
ts

F
o

r
S

u
b

 F
a

ct
o

rs
 Testability

Comparison At Sub-
Factor Level

Overall Comparison
Between Projects

P1 P2 P3 P1 P2 P3

F1 0.08

SF1 0.023 0.619 0.096 0.284

0.039 0.009 0.032
SF3 0.008 0.688 0.234 0.078

SF4 0.032 0.272 0.120 0.608

SF6 0.017 0.627 0.081 0.292

F2 0.37

SF1 0.098 0.619 0.096 0.284

0.162 0.137 0.068 SF2 0.197 0.284 0.619 0.096

SF6 0.071 0.627 0.081 0.292

F3 0.04

SF2 0.010 0.284 0.619 0.096

0.023 0.012 0.008

SF3 0.018 0.688 0.234 0.078

SF4 0.003 0.272 0.120 0.608

SF5 0.005 0.619 0.096 0.284

SF6 0.007 0.627 0.081 0.292

F4 0.25

SF2 0.051 0.284 0.619 0.096

0.098 0.056 0.091
SF3 0.024 0.688 0.234 0.078

SF4 0.100 0.272 0.120 0.608

SF5 0.071 0.619 0.096 0.284

F5 0.14

SF1 0.087 0.619 0.096 0.284

0.088 0.018 0.035 SF3 0.032 0.688 0.234 0.078

SF5 0.022 0.619 0.096 0.284

F6 0.13

SF1 0.037 0.619 0.096 0.284

0.075 0.022 0.028 SF2 0.068 0.688 0.234 0.078

SF3 0.021 0.272 0.120 0.608

Tot
al

1.00
Overall Global Utility /Priority 0.485 0.254 0.261

Project Ranking 1 3 2

275

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

six external quality factors identified from the previous
research work which are further linked with basic object
oriented programming features which indirectly
contributes to testability too. The identified quality factors
are Controllability, Observability, Complexity,
Understandability, Traceability and Built-in Test which are
further dependent on internal sub factors namely
Encapsulation, Inheritance, Coupling, Cohesion, Size-
Complexity and Polymorphism. Furthermore all these
factors were linked to suitable static object oriented metrics.
This is being done to evaluate the comparative values of
factor and sub-factors matrix values to be used for
evaluation the assessment model using AHP technique. The
evaluation is further applied on three object oriented
medium sized projects for identifying and ranking most
testable project. The overall testability index is further
calculated for all projects.
The study can be extended further by gathering
comparative values of characteristics from running projects,
which are developed using OO technology. Though, the
projects, which are compared here, are not so large.
However, our motive is to show the applicability of
proposed scheme for the testability estimation of Object
Oriented Software. Proposed schemes can be applied on
real life software based on the values of identified six
factors and it will determine the Testability Index (TI) for
the considered software. It can be applied on each module
(method, class, package, module etc) in order to know their
testability or it can also be applied on whole developed
system to know its overall testability.

REFERENCES

[1] J. Radatz, A. Geraci, and F. Katki, “IEEE Standard Glossary of

Software Engineering Terminology (IEEE Std 610.12-1990),”

1990.

[2] ISO, “ISO/IEC 9126: Software Engineering Product Quality,”

2002.

[3] A. P. Mathur, Foundations of Software Testing, Second. Pearson,

2013.

[4] P. R. Suri and H. Singhani, “Object Oriented Software

Testability Survey at Designing and Implementation Phase,”

International Journal of Science and Research, vol. 4, no. 4, pp.

3047–3053, 2015.

[5] P. R. Suri and H. Singhani, “Object Oriented Software

Testability (OOSTe) Metrics Analysis,” International Journal of

Computer Applications Technology and Research, vol. 4, no. 5, pp.

359–367, 2015.

[6] R. V Binder, “Design For Testabity in Object-Oriented

Systems,” Communications of the ACM, vol. 37, pp. 87–100,

1994.

[7] R. S. Freedman, “Testability of software components -

Rewritten,” IEEE Transactions on Software Engineering, vol. 17,

no. 6, pp. 553–564, 1991.

[8] J. M. Voas and K. W. Miller, “Software Testability  : The New

Verification,” IEEE Software, vol. 12, no. 3, pp. 17–28, 1995.

[9] J. M. Voas and K. W. Miller, “Improving the software

development process using testability research,” in Software

Reliability Engineering,1992. Third International Symposium on.

IEEE, 1992, pp. 114–121.

[10] D. Esposito, “Design Your Classes For Testbility.” 2008.

[11] J. Fu, B. Liu, and M. Lu, “Present and future of software

testability analysis,” ICCASM 2010 - 2010 International

Conference on Computer Application and System Modeling,

Proceedings, vol. 15, no. Iccasm, 2010.

[12] S. Jungmayr, “Testability during Design,” pp. 1–2, 2002.

[13] B. Pettichord, “Design for Testability,” in Pacific Northwest

Software Quality Conference., 2002, pp. 1–28.

[14] E. Mulo, “Design for Testability in Software Systems,” 2007.

[15] R. A. Khan and K. Mustafa, “Metric based testability model

for object oriented design (MTMOOD),” ACM SIGSOFT

Software Engineering Notes, vol. 34, no. 2, p. 1, 2009.

[16] M. Nazir, R. A. Khan, and K. Mustafa, “Testability Estimation

Framework,” International Journal of Computer Applications, vol.

2, no. 5, pp. 9–14, 2010.

[17] J. E. Payne, R. T. Alexander, and C. D. Hutchinson, “Design-

for-Testability for Object-Oriented Software,” Object Magazine,

vol. 7, no. 5, pp. 34–43, 1997.

[18] Y. Wang, G. King, I. Court, M. Ross, and G. Staples, “On

testable object-oriented programming,” ACM SIGSOFT

Software Engineering Notes, vol. 22, no. 4, pp. 84–90, 1997.

[19] B. Baudry, Y. Le Traon, G. Sunye, and J. M. Jézéquel,

“Towards a ’ Safe ’ Use of Design Patterns to Improve OO

Software Testability,” Software Reliability Engineering, 2001.

ISSRE 2001. Proceedings. 12th International Symposium on, pp.

324–329, 2001.

[20] M. Harman, A. Baresel, D. Binkley, and R. Hierons,

“Testability Transformation: Program Transformation to

Improve Testability,” in Formal Method and Testing, LNCS,

2011, pp. 320–344.

[21] M. Badri, A. Kout, and F. Toure, “An empirical analysis of a

testability model for object-oriented programs,” ACM

SIGSOFT Software Engineering Notes, vol. 36, no. 4, p. 1, 2011.

[22] M. Joshi and N. Sardana, “An Enhanced Marking Target

Statement Strategy of E-PIE for Testability Estimation,” in

Contemporary Computing (IC3), 2014 Seventh International

Conference on. IEEE, 2014, pp. 346–350.

[23] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for

Object Oriented Design,” IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[24] T. Mayer and T. Hall, “Measuring OO systems: a critical

analysis of the MOOD metrics,” Proceedings Technology of

Object-Oriented Languages and Systems. TOOLS 29 (Cat.

No.PR00275), 1999.

[25] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A

measurement framework for object-oriented software

testability,” Information and Software Technology, vol. 47, no.

April, pp. 979–997, 2005.

[26] B. Henderson and Sellers, Object-Oriented Metric. New Jersey:

Prentice Hall, 1996.

[27] A. Fernando, “Design Metrics for OO software system,”

ECOOP’95, Quantitative Methods Workshop, 1995.

[28] M. Badri, “Empirical Analysis of Object-Oriented Design

Metrics for Predicting Unit Testing Effort of Classes,” Journal

of Software Engineering and Applications, vol. 05, no. July, pp.

513–526, 2012.

[29] M. Bruntink and A. Vandeursen, “An empirical study into

class testability,” Journal of Systems and Software, vol. 79, pp.

1219–1232, 2006.

[30] L. Badri, M. Badri, and F. Toure, “An empirical analysis of

lack of cohesion metrics for predicting testability of classes,”

International Journal of Software Engineering and its Applications,

vol. 5, no. 2, pp. 69–86, 2011.

276

IJSER

International Journal of Scientific & Engineering Research, Volume 6, Issue ƚȮɯ)ÜÕÌ-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

[31] Y. Singh and A. Saha, “Predicting Testability of Eclipse: Case

Study,” Journal of Software Engineering, vol. 4, no. 2, pp. 122–

136, 2010.

[32] B. Baudry, Y. Le Traon, and G. Sunye, “Improving the

testability of UML class diagrams,” First International

Workshop onTestability Assessment, 2004. IWoTA 2004.

Proceedings., 2004.

[33] M. Genero, M. Piattini, and C. Calero, “A survey of metrics

for UML class diagrams,” Journal of Object Technology, vol. 4,

no. 9, pp. 59–92, 2005.

[34] B. Baudry and Y. Le Traon, “Measuring design testability of a

UML class diagram,” Information and Software Technology, vol.

47, no. 13, pp. 859–879, 2005.

[35] B. Baudry, Y. Le Traon, and G. Sunye, “Testability analysis of

a UML class diagram,” Proceedings Eighth IEEE Symposium on

Software Metrics, 2002.

[36] T. L. Saaty, “Decision making with the analytic hierarchy

process,” International Journal of Services Sciences, vol. 1, no. 1,

p. 83, 2008.

[37] P. Khanna, “Testability of Object-Oriented Systems  : An

AHP-Based Approach for Prioritization of Metrics,” in

International Conference on Contemporary Computing and

Informatics(IC3I), 2014, pp. 273–281.

[38] S. K. Dubey, A. Mittal, and A. Rana, “Measurement of Object

Oriented Software Usability using Fuzzy AHP,” International

Journal of Computer Science and Telecommunications, vol. 3, no.

5, pp. 98–104, 2012.

[39] P. K. Singh, O. P. Sangwan, A. Pratap, and A. P. Singh,

“Testability Assessment of Aspect Oriented Software Using

Multicriteria Decision Making Approaches,” World Applied

Sciences Journal, vol. 32, no. 4, pp. 718–730, 2014.

[40] P. K. Singh, O. P. Sangwan, A. P. Singh, and A. Pratap, “A

Quantitative Evaluation of Reusability for Aspect Oriented

Software using Multi-criteria Decision Making Approach,”

World Applied Sciences Journal, vol. 30, no. 12, pp. 1966–1976,

2014.

[41] C. Yang, Y. Zheng, M. Zhu, Z. Zuo, X. Chen, and X. Peng, “A

Testability Allocation Method Based on Analytic Hierarchy

Process and Comprehensive Weighted,” in IEEE 9th

Conference on Industrial Electronics and Applications (ICIEA),

2014, pp. 113–116.

[42] R. G. Dromey, “A Model for Software Product Quality,” IEEE

Transactions on Software Engineering, vol. 21. pp. 146–162, 1995.

[43] S. Khalid, S. Zehra, and F. Arif, “Analysis of object oriented

complexity and testability using object oriented design

metrics,” in Proceedings of the 2010 National Software

Engineering Conference on - NSEC ’10, 2010, pp. 1–8.

[44] M. Nazir and K. Mustafa, “An Empirical Validation of

Testability Estimation Model,” International Journal of

Advanced Research in Computer Science and Software Engineering,

vol. 3, no. 9, pp. 1298–1301, 2013.

[45] L. C. Briand, J. Wust, S. V. Ikonomovski, and H. Lounis,

“Investigating quality factors in object-oriented designs: an

industrial case study,” Proceedings of the 1999 International

Conference on Software Engineering (IEEE Cat. No.99CB37002),

1999.

[46] L. Rosenberg and L. Hyatt, “Software quality metrics for

object-oriented environments,” Crosstalk Journal, April, vol. 10,

no. 4, pp. 1–6, 1997.

[47] M. Nazir and R. A. Khan, “Software Design Testability

Factors: A New Perspective,” in Proceedings of Third National

Conference INDIACOM, 2009, pp. 1–6.

[48] H. Singhani and P. R. Suri, “Object Oriented

SoftwareTestability (OOSTe) Metrics Assessment

Framework,” International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 5, no. 4, pp.

1096–1106, 2015.

[49] M. Bruntink, “Testability of Object-Oriented Systems  : a

Metrics-based Approach,” Master’s thesis, Faculty of Natural

sciences, Mathematics, and Computer science, University of

Amsterdam, 2003.

[50] M. Genero, M. Piattini, and C. Calero, “An Empirical Study to

Validate Metrics for Class Diagrams,” in Proc. of International

Database Engineering and Applications Symposium (IDEAS’02),

Edmonton, Canada., 2002, pp. 1–10.

[51] M. Patidar, R. Gupta, and G. Chandel, “Coupling and

Cohesion Measures in Object Oriented Programming,”

International Journal of Advanced Research in Computer Science

and Software Engineering, vol. 3, no. 3, pp. 517–521, 2013.

[52] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra,

“Empirical study of object-oriented metrics,” Journal of Object

Technology, vol. 5, no. 8, pp. 149–173, 2006.

[53] J. M. Voas, J. M. Voas, K. W. Miller, K. W. Miller, J. E. Payne,

and J. E. Payne, “An Empirical Comparison of a Dynamic

Software Testability Metric to Static Cyclomatic Complexity,”

1993.

[54] S. A. Khan and R. A. Khan, “Object Oriented Design

Complexity Quantification Model,” Procedia Technology, vol. 4,

pp. 548–554, 2012.

[55] T. B. Nguyen, M. Delaunay, and C. Robach, “Testability

Analysis of Data-Flow Software,” Electronic Notes in Theoretical

Computer Science, vol. 116, pp. 213–225, 2005.

[56] S. Kansomkeat, J. Offutt, and W. Rivepiboon, “INCREASING

CLASS-COMPONENT TESTABILITY,” in Proceedings of 23rd

IASTED International Multi-Conference, 2005, pp. 15–17.

[57] T. Jeon, L. Sungyoun, and H. Seung, “Increasing the

Testability of Object-Oriented Frameworks with Built-in

Tests,” in Advanced Internet Services and Applications. Springer

Berlin Heidelberg, 2002, pp. 169–182.

[58] J. Vincent, G. King, P. Lay, and J. Kinghorn, “Principles of

Built-In-Test for Run-Time-Testability in Component-Based

Software Systems,” Software Quality Journal, vol. 10, no. 2, pp.

115–133, 2002.

[59] A. Goel, S. C. Gupta, and S. K. Wasan, “COTT – A Testability

Framework for Object- Oriented Software Testing,”

International Jounal of Computer Science, vol. 3, no. 1, pp. 813–

820, 2008.

[60] M. Nazir, R. A. Khan, and K. Mustafa, “A Metrics Based

Model for Understandability Quantification,” Journal of

Computing, vol. 2, no. 4, pp. 90–94, 2010.

[61] J. Bach, “Test Plan Evaluation Model,” Satisfies Inc., 1999. .

[62] J. Bach, “Heuristics of Software Testability,” Satisfice, Inc.,

2003. .

277

IJSER

